Chemistry Letters 1998 505

New Organic Conductor Containing Magnetic Ion of Cu(II): α''-(BEDT-TTF)₂KCu(SCN)₄

Hatsumi Mori,*† Tetsuro Okano,†,†† Naoki Sakurai,†,††† Shoji Tanaka,† Koji Kajita,†† and Hiroshi Moriyama†††

†International Superconductivity Technology Center, Shinonome Koto-ku, Tokyo 135-0062

††Department of Physics, Faculty of Science, Toho University, Funabashi, Chiba 274-8510

†††Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274-8510

(Received March 6, 1998; CL-980166)

New organic conductor containing p π -d electrons, α'' -(BEDT-TTF)₂KCu(SCN)₄, is eventually prepared. The calculated band structure is one-dimensional along the donor stacking direction. The electrical conductivity at room temperature is 0.5 Scm⁻¹ with the activation energy of 0.09eV. The magnetic susceptibility is an addition of a Curie contribution of Cu(II) and an organic p π part. The susceptibility of the p π part does not follow the simple one-dimensional Heisenberg model.

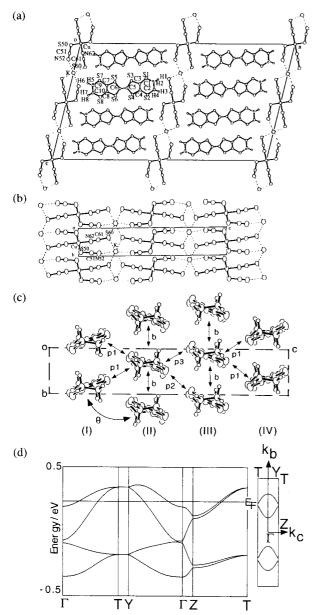
After the discovery of the first ambient pressure organic superconductor with Tc over 10K, κ -(BEDT-TTF)₂Cu(NCS)₂, two minor phases of Cu(SCN), salts have been prepared: α-(BEDT-TTF)₂Cu(NCS)₂, which undergoes a metal-insulator transition at 200K, and (BEDT-TTF) $Cu_2(SCN)_3$ with 2 x 10⁻⁵ S cm⁻¹ and Ea= 0.17 eV. Recently we have eventually found the fourth Cu-(SCN)₂ salt containing 3d localized electrons on Cu(II), α"- $(BEDT-TTF)_2KCu(SCN)_4$. Organic conductors possessing $p\pi$ -d electrons have attracted interests due to a rich variety of magnetic properties by interactions between $p\pi$ and d electrons: for examples, Cu(DMeDCNQI)₂ (DMeDCNQI: dimethyl-N, N'- dicyanoquionediimine)⁴ and λ-(BETS)₂FeCl₄ (BETS:bis- (ethylenedithio)tetraselenafulvalene).⁵ In this paper, the preparation, crystal and band structures, electrical resistivity, and magnetic susceptibility of new p π -d conductor, α "-(BEDT-TTF)₂KCu(SCN)₄, are described.

Single crystals were grown by the electrocrystallization method in the presence of CuSCN, KSCN, and 18-Crown-6 in the mixed solvent of 1,1,2-trichloroethane and 10 % vol. ethanol. The only one exceptional batch has afforded α "-(BEDT-TTF)₂KCu-(SCN)₄. The electrical resistivity measurement was carried out by the conventional d.c. four-probe method. The conductivity at room temperature is 0.5 Scm⁻¹ and the activation energy is 0.09 eV.

The crystal structure analysis of α "-(BEDT-TTF) $_2$ KCu(SCN) $_4$ has been carried out. 6 A donor layer and an anion sheet stack alternately along the a-axis (Figure 1(a)). The donor is located on a general position, K $^+$ is on a two-fold axis, Cu $^{2+}$ is on an inversion center, two SCN $^-$ ions are on general positions. Therefore, one donor, 1/2 of K $^+$ and Cu $^{2+}$, two SCN $^-$ are crystallographically independent. The distances of the central C=C and C-S in a BEDT-TTF molecule are 1.350(6) and 1.74 Å, respectively, indicating that the charge on a donor is +0.5. 7 As a consequence, Cu is divalent.

The anion arrangement indicates that Cu^{2+} is coordinated by two N62 atoms and two S50 atoms of SCN ions to form a plane(Figure 1(b); \angle (S50-Cu-N62)=85.2(2), 94.8(2)°). The K⁺ atom has ionic contacts with four S60 atoms and two N52 atoms octahedrally.[\angle (S60-K-S60)=81.80(4), 98.2(1), 179.98(9)°, \angle (S60-K-N52)=82.4(1), 89.3(1), 90.7(1), 97.6(1)°] Therefore, two-dimensional anion network spreads in the bc plane.

As shown in Figure 1(c), the donor arrangement is α "-type. The donors stack regularly in the b-direction and the donor dihedral angle between columns of I and II or III and IX (θ ; Figure 1(c)) is 128°. This donor stacking behavior is similar to θ -phase, but the donor interactions among columns II and III resemble those of β "-type salts¹¹; the donor stacks in the θ '(p2), 3θ '(b), and 6θ °(p3) directions and the p3 interaction is the largest. Namely, the donor stacking behavior of α "-type is the combination of θ -type and β "-type.


In order to investigate the electronic state of $\alpha"\text{-}(BEDT\text{-}TTF)_2\text{-}KCu(SCN)_4$ and other $\alpha"\text{-}type$ salts, the transverse integrals were calculated 12 and summarized in Table 1. By increasing a dihedral angle (θ), the transverse integral (|p1|) decreases; this behavior is similar to $\theta\text{-}type$ salts. 13 In $\theta\text{-}type$ BEDT-TTF salts, a metal-insulator transition temperature (T_{MI}) increases with an increase of a dihedral angle (θ) or a decrease of a overlap integral (|p1|). At the same time the bandwidth decreases in proportion to |p1|. T_{MI} of $\alpha"\text{-}type$ salt seems to follow this rule except for $\alpha"\text{-}ET_2Cu_5I_6$ due to a two-dimensional rigid network. The calculated Fermi surface is one-dimensional along the donor stacking direction, which is characteristic of $\alpha"\text{-}type$ BEDT-TTF salts (Figure 1(d)).

Magnetic susceptibility is measured by SQUID (Quantum Design MPMSXL7). The magnetization curves in the magnetic field at 5K and 10K follow the Brillouin function with g=2.0 and S=1/2 originated from Cu²+. The temperature dependence of magnetic susceptibility is shown in Figure 2. The spin susceptibility of BEDT-TTF, χ_{ET} is calculated by subtracting a Curie contribution of Cu²+ (S=1/2, g=2.0) from the total susceptibility, χ_{total} , χ_{ET} at room temperature is 7.4×10^{-4} emu mol¹, which is a little higher than that of θ -(BEDT-TTF)₂RbZn(SCN)₄, 6.3×10^{-4} emu mol¹, indicating a highly correlated system and the temperature dependence of χ_{ET} does not follow the simple one-dimensional Heisenberg model.

In summary, an organic conductor containing $p\pi$ -d electrons, α "-(BEDT-TTF), $KCu(SCN)_4$, was newly prepared. The con-

Table 1. The calculated overlap integrals (b,p1,p2,p3), dihedral angle (θ), metal-insulator transition temperature (T_{Ml}) of α "-type BEDT-TTF (ET) salts

	overlap integral (x10 ⁻³) b p1 p2 p3				$\theta/^{\circ}T_{MI}/K$ reference		
ET, K ₁₄ Co(SCN) ₄	-1.5	-10.5	-9.3	-0.1	99	130	8
ET, CsHg(SCN) ₄							9
				16.4			10
					128 semicon, this		
-							work

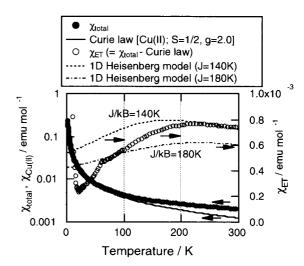


Figure 1. (a)Crystal structure, (b)anion arrangement, (c)donor arrangement, and (d)band structure and Fermi surface of α "-(BEDT-TTF)₂KCu(SCN)₄.

ductivity at room temperature is 0.5 Scm⁻¹ and the activation energy is 0.09eV. The crystal structure analysis shows a two-dimensional layered structure, where the donor arrangement is α "-type and in an anion layer the charge of Cu is (2+). A magnetization curves in a magnetic field at 5 and 10K follow the Brillouin function with g=2.0 and S=1/2 originated from Cu²⁺. The temperature dependence of magnetic susceptibility is analyzed by an addition of a Curie contribution of Cu²⁺ and highly correlated organic $p\pi$ spins, which does not follow a simple one-dimensional Heisenberg model.

References and Notes

1 H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, and J. Tanaka, *Chem. Lett.*, **1988**, 55.

Figure 2. Temperature dependence of magnetic susceptibility of α "-(BEDT-TTF), KCu(SCN)₄.

- 2 N. Kinoshita, K. Takahashi, K. Murata, M. Tokumoto, and H. Anzai, *Solid State Commun.*, **67**, 465 (1988).
- 3 U. Geiser, M. A. Beno, A. M. Kini, H. H. Wang, A. J. Shultz, B. D. Gates, C. S. Cariss, K. D. Carlson, and J. M. Williams, Synthetic Metals, 27, A235 (1988).
- 4 S. Hunig, J.Mater.Chem., 5, 1469 (1995)
- 5 H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, J. Am. Chem. Soc., 118, 368 (1996).
- 6 Crystal data: $C_{24}H_{16}S_{20}CuN_4K$, Fw=1104.38, monoclinic, space group C2/c (#15), a=41.112(2), b=4.257(3), c=23.086(2) Å, β=103.463(5)°, V=3929(2)ų, Z=4, $D_{calc.}$ =1.867 g cm⁻³. Intensity data were collected using Rigaku-AFC5R automated four-circle diffractometer with graphite monochro- mated Mo-Kα radiation (λ =0.71073 Å). 2396 independent reflections (I>3σ(I)) were used for the structure analysis. The crystal structure was solved by the direct method (SHELX86) and refined by a full-matrix least squares method . Final R and Rw values were 0.046 and 0.028, respectively.
- 7 H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki, and H. Inokchi, *Mol. Cryst. Liq. Cryst.*, 107, 33 (1984).
- H. Mori, S. Tanaka, and T. Mori, Mol. Cryst. Liq. Cryst., 284, 15 (1996).
- 9 H. Mori, S. Tanaka, T. Mori, Y. Maruyama, and H. Inokuchi, *Solid State Commun.*, **78**, 49 (1991).
- 10 L. I. Buravov, A. V. Zvarykina, M. V. Kartsovnik, N. D. Kushch, V. N. Laukhin, R. M. Lokovskaya, V. A. Merzhanov, L. N. Fedutin, R. P. Shibaeva, and E. B. Yagubskii, Sov. Phys. JETP, 65(2), 336 (1987); T. Mori and H. Inokouchi, in "The Physics and Chemistry of Organic Superconductors," ed by G.Saito and S.Kagoshima, Springer-Verlag Berlin, Heidelberg(1990), Vol. 51, p204.
- 11 T. Mori, F. Sakai, G. Saito, and H. Inokuchi, *Chem. Lett.*, 1986, 1037.
- 12 T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, and H. Inokuchi, *Bull. Chem. Soc. Jpn.*, **57**, 627 (1984).
- 13 H. Mori, S. Tanaka, and T. Mori, Phys. Rev. B, in press.